
International Journal of Research in Advent Technology, Vol.3, No.4, April 2015
E-ISSN: 2321-9637

116

Face Detection Using Hadoop Map-Reduce Framework
Tanmay Bagwe1, Nishit Darji2, Jayesh Gunjal3, Nisha Vanjari4

1,2,3 Student, Department Of Computer Engineering, K.J Somaiya Institute Of Engineering & IT, Maharashtra,
India

4 Professor, Department Of Computer Engineering, K.J Somaiya Institute Of Engineering & IT, Maharashtra,
India

Abstract:-As multimedia contents on web are increasing at a large scale as compared to available memory and
processor’s speed for processing these large amount of data,it is necessary to manage data in such a way so that
it gives low performance overhead.Distributed Computing is one of the approach for efficiently handling the
Big data.Hadoop is an opensource framework that allows for the distributed processing of large data sets across
clusters of computers using simple programming models.In this paper face detection is taken as an case example
for analyzing the performance of the Hadoop framework.We have discussed this example for the single node
cluster where input image will be received from the user and Haar Feature-based Cascade Classifier for Object
Detection algorithm defined in OpenCV library is used for face detection.Java Native Interface (JNI) is used to
integrate OpenCV into interface.

Index Terms- HDFS,Hadoop,HDFS,MapReduce,Distributed Computing.

1. INTRODUCTION

Although the computing power of machines is
increasing at a very high speed. Almost every 3 years,
CPU’s computing power increased twice. However
size of the files keeps increasing also in an amazing
rate. To store such colossal amount of data instead of
using a simple Client Server architecture it’ll be better
to use an architecture wherein the data exhibits the
property of logical independence. A system where in
the data must be distributed on a large number of
workstations so that it may reduce the burden of
analysis on a single machine. Video processing is
very well suited to distributed system implementation.
Processing in the Hadoop is inherently distributed.
Hadoop supports parallel running of applications on
large clusters of commodity hardware.

“Hadoop Library is designed to scale up
from single servers to thousands of machines, each
offering local computation and storage. Rather than
rely on hardware to deliver high-availability, the
library itself is designed to detect and handle failures
at the application layer, so delivering a highly
available service on top of a cluster of computers,
each of which may be prone to failures.” –Apache.
Our idea is very simple. Assume there is a very large
video data base. Giving a set of video frames or
image, we hope to find it from that database, and tell
the position of that input file. The idea is simple but it
is very useful in different aspects. The key point of
this project is building application with high
scalability. So That Even when database size is
increased, the application can still handle it.

2. PROPOSED SYSTEM

Figure 1 : System Architecture

As a multimedia content is growing at an increasing
rate, it requires scalable and efficient solution to
perform job scheduling and video analysis task. We
present a novel implementation utilizing Apache
Hadoop MapReduce framework for both analysis job
scheduling and video data distribution. Our project
will have face recognition as a case example for
distributing the task among the multiple nodes. As
shown in the system architecture FFMpeg will take
the video and convert it into the images. These images
are stored into the HDFS. We will be having one
namenode and multiple datanode, where user enters
input image onto the namenode and this namenode

International Journal of Research in Advent Technology, Vol.3, No.4, April 2015
E-ISSN: 2321-9637

117

further distributes this image among several datanodes
to accomplish the task of face recognition.

The system architecture includes following
components:

2.1. FFMpeg:
To convert video into images.

2.2. .Apache Hadoop:
Opensource distributed framework.

2.2.1. HDFS (Hadoop Distributed File System) :

HDFS is designed to reliably store very large files
across machines in a large cluster. It is inspired by the
Google File System. HDFS is composed of
NameNode and DataNode. HDFS stores each file as a
sequence of blocks (currently 64 MB by default) with
all blocks in a file the same size except for the last
block. Blocks belonging to a file are replicated for
fault tolerance. The block size and replication factor
are configurable per file. Files in HDFS are write-
once and can have only one writer at any given time.
[5]

2.2.2. HIPI (Hadoop Image Processing Interface) :

HIPI is a library for Hadoop's MapReduce framework
that provides an API for performing image processing
tasks in a distributed computing environment. The
input type used in HIPI is referred to as a
HipiImageBundle (HIB). A HIB is a set of images
combined into one large file along with some
metadata describing the layout of the images. A HIB
can be created from an already existing set of images
or directly through some other source (e.g. our
Distributed Downloader example).

In order to improve the efficiency of some
jobs, HIPI allows a user to specify a culling function
that discards images that do not meet a specified set of
criteria (e.g. the image must be less than 10
megapixels). The user-specified CullMapper class is
then invoked on each image that passes the culling
test. Images are presented to this class as a FloatImage
and an associated ImageHeader. Although HIPI does
not directly modify any of the default Hadoop
MapReduce behavior once the Mapper's take over, a
user can modify execution parameters specific to
image processing tasks through the HipiJob object
during setup.

2.2.3. MapReduce :

Hadoop’s Programming Model.

2.3. OpenCV/JavaCV [6] :

Programming tool to perform face recognition task. It
has C++, C, Python and Java interfaces and supports

Windows, Linux, Mac OS, iOS and Android.
OpenCV was designed for computational efficiency
and with a strong focus on real-time applications.
Written in optimized C/C++, the library can take
advantage of multi-core processing. Usage ranges
from interactive art, to mines inspection, stitching
maps on the web or through advanced robotics

3. MODULES

3.1. Video To Image Conversion Using FFMPEG :

Figure 2 : Output Images

FFmpeg is a free software project that
produces libraries and programs for handling
multimedia data. FFmpeg includes libavcodec, an
audio/video codec library used by several other
projects, libavformat, an audio/video container mux
and demux library, and the ffmpeg command line
program for transcoding multimedia files. FFmpeg is
published under the GNU Lesser General Public
License 2.1+ or GNU General Public License 2+
(depending on which options are enabled)

ffmpeg –i inputfile.avi –r 1 –f image2 image-
%3d.jpeg

Now, let us see what all these different flags in the
above command means.

• -r This is used to set the frame rate of video.
i.e. no. of frames to be extracted into images
per second. The default value is 25, using
which, would have yielded a large number of
images.

• -f This option defines the format we want to
force/use, although removing this option
shouldn't cause any problem.

• image-%3d.jpeg By %3d, we mean that we
want the naming of the image files to be of
the format "image-001.jpeg, image-
002.jpeg.." and so on. If we had used image-
%2d the names would have been image-

International Journal of Research in Advent Technology, Vol.3, No.4, April 2015
E-ISSN: 2321-9637

118

01.jpeg, image-02.jpeg. You can use any
format as per your choice.

We can also define the image size of the extracted
images using the -s flag. The default option is to use
the image size same as the video resolution.

3.2. Single Node Hadoop :

Figure 3 : Starting Hadoop

3.3. Face Detection Using MapReduce In OPENCV:

In order to apply face detection algorithm to each
image, map function has to get the whole image
contents as a single input record. HDFS creates splits
from input files according to the configured split-size
parameter. These InputSplits become the input to the
MapTasks. Creating splits from files causes some files
to be divided into more than one split, if their file size
is larger than the split-size. Moreover, a set of files
can become one InputSplit if the total size of input
files is smaller than the split size. In other words,
some records may not be represented as the binary
content of each file. This explains why new classes
for input format and record reader have to be
implemented to enable MapTask to process each
binary file as a whole.

In this paper, ImageFileInputFormat class is
developed by deriving the FileInputFormat class of
Hadoop. ImageFileInputFormat creates FileSplit from
each image file. Because, each image file is not
splitted, binary image content is not corrupted. In
addition, ImageFileRecordReader class is developed
to create image records from FileSplits for map
function by deriving Hadoop’s RecordReader class. In
that way pixel data of images are easily fetched from
Hadoop input splits into image processing tasks (map
tasks). After that point, any image processing
algorithm can be applied to image content. In our
case, map function of the Mapper class applies the
face detection algorithm to image records. Haar
Feature-based Cascade Classifier for Object Detection

algorithm defined in OpenCV library is used for face
detection. Java Native Interface (JNI) is used to
integrate OpenCV into interface. Implementation of
map function is presented below."FaceInfoString" is
the variable that contains the information about
detection properties such as image name and
coordinates where faces are detected.

Algorithm Of Map [2]

Class : Mapper
Function : Map
Map (TEXT key(filename), BytesWritable
value(imgdata), OutputCollector)
getImgBinaryData_From_Value;
convertBinaryData_To_JavaImage;
InitializeOpenCV_Via_JNI Inter face ;
runOpenCV_HaarLikeFaceDetector ;
for each (DetectedFace)
createFaceBuffer_FaceSize ;
copyFacePixels_To_Buffer ;
create_Face Inf oString ;
collectOutput :
set_key_FaceInfoSt r ing ;
set_value_FaceImgBuffer ;
end_foreach

Hadoop generates names of output files as
strings with job identification numbers (e.g.: part
0000). After face detection, our image processing
interface creates output files as detected face images.
In order to identify these images easily, the output file
names should contain detected image name and
detected coordinate information (eg:
SourceImageName(100,150).jpg).ImageFileOutputFo
rmat class is developed to store output files as images
with desired naming. ReduceTask is not used for face
extraction because each MapTask generates unique
outputs to be stored in the HDFS. Each task processes
only one image, creates output and exits. This
approach degrades the system performance seriously.
The overhead comes from initialization times of huge
number of tasks.

In order to decrease the number of tasks,
firstly, converting small-size files into single largesize
file and process technique is implemented.
SequenceFile is a Hadoop file type which is used for
merging many small-size files [7]. SequenceFile is the
most common solution for small file problem in
HDFS. Many small files are packed as a single large-
size file containing small-size files as indexed
elements in <key, value> format. Key is file index
information and value is the file data. This conversion
is done by writing a conversion job that gets small-
files as input and SequenceFile as output. Although
general performance is increased with SequenceFile
usage, input images do not preserve their image
formats after merging. Preprocessing is also required
for each addition of new input image set. Small files

International Journal of Research in Advent Technology, Vol.3, No.4, April 2015
E-ISSN: 2321-9637

119

cannot be directly accessed in SequenceFile, whole
SequenceFile has to be processed to obtain an image
data as one element.

Secondly, combining set of images as one
InputSplit technique is implemented to optimize
small-size image processing in HDFS. Hadoop
CombineFileInputFormat can combine multiple files
and create InputSplits from this set of files. In
addition to that, CombineFileInputFormat selects files
which are in the same node to be combined as
InputSplit. So, amount of data to be transferred from
node to node decreases and general performance
increases. CombineFileInputFormat is an abstract
class that does not work with image files directly. We
developed CombineImageInputFormat derived from
CombineFileInputFormat to create CombineFileSplit
as set of image. MultiImageRecordReader class is
developed to create records from CombineFileSplit.
This record reader uses ImageFileRecordReader class
to make each image content as single record to map
function. ImageFileOutputFormat is used to create
output files from detected face images and stored into
HDFS.

4. EXPECTED RESULT

Figure 4 : Time cost of face recognition under
different number of nodes in the Cloud.[1]

As shown in the figure 4 as number of nodes on the
cloud increases the time required to perform face
recognition task decreases.

Acknowledgments

We would like to thank Prof. Nisha Vanjari for her
excellent guidance, Prof. Nilambari Joshi for
encouraging us to implement such a unique project
and also we are thankful to Prof. Jignasha Dalal for
giving us such big opportunity to work on this project.

REFERENCES

[1]. Xi Wang, Xi Zhao, Varun Prakash, Zhimin Gao,
 Tao Feng,Omprakash Gnawali, Weidong
 Shi.”Person-Of-Interest Detection System Using
 Cloud-Supported Computerized- Eyewear”.

[2]. İ. Demir, A. Sayar,” Hadoop Optimization for
 Massive Image Processing:Case Study Face
 Detection”, International Journal of Computers
 Communication and Control ISSN 1841-9836,
 9(6):664-671, December, 2014.
[3]. http://hadoop.apache.org/.
[4]. http://hadoop.apache.org/docs/r0.18.3/mapred_tut
 orial.html
[5]. http://hadoop.apache.org/docs/r1.2.1/hdfs_design.
 html
[6]. http://opencv.org
[7]. http://wiki.apache.org/hadoop/SequenceFile
[8]. http://hipi.cs.virginia.edu
[9]. https://developer.yahoo.com/hadoop/tutorial/

